Центр тяжести дуги окружности

Центр тяжести дуги окружности

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

3. Метод отрицательных площадей. Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S1 и площади вырезанной части S2 .

Рис.9

4. Метод группировки. Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L — длина дуги АВ, равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О, равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy, координаты вершин которого известны: Ai (xi,yi), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А1А2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А3 М3 (рис.11).

Рис.11

Разбивая треугольник на полоски, параллельные стороне А2А3, можно убедиться, что он должен лежать на медиане А1М1. Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан, которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А1М1 получим, учитывая, что координаты точки М1 — это среднее арифметическое координат вершин А2 и А3 :

Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox (рис.12) .

Очевидно, что yc = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом dφ. С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R×dφ и высотой R. Площадь такого треугольника dF=(1/2)R 2 ?dφ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R?cosφ. Подставляя в (5) F = αR 2 , получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга.

Подставляя в (2) α = π/2, получим: xc = (4R)/(3π) ≅ 0,4R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Координаты центров тяжести:

0.

Площади:

Рис. 6.5.

Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа.

Рис.15

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата так как тело имеет ось симметрии (диагональ).

Пример 4. Проволочная скобка (рис.16) состоит из трёх участков оди­наковой длины l.

Рис.16

Координаты центров тяжести участ­ков:

Поэтому координаты центра тяжести всей скобки:

Пример 5. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.17).

Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где g — ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Читайте также:  Сколько стоит компания гугл на сегодня

Рис.17

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где Li длина i-го стержня фермы, а xi, yi — координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня, для нее L1 = 4 м, x1 = 0 м, y1= 2 м. Вторая группа стержней состоит из пяти стержней, для нее L2 = 20 м, x2= 3 м, y2= 2 м.

Координаты центра тяжести фермы находим по формуле:

Вопросы для самопроверки

— Что называется центром параллельных сил?

— Как определяются координаты центра параллельных сил?

— Как определить центр параллельных сил, равнодействующая которых равна нулю?

— Каким свойством обладает центр параллельных сил?

— По каким формулам вычисляются координаты центра параллельных сил?

— Что называется центром тяжести тела?

— Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

— Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

— Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

— Что называют статическим моментом площади?

— Приведите пример тела, центр тяжести которого расположен вне тела.

— Как используются свойства симметрии при определении центров тяжести тел?

— В чем состоит сущность способа отрицательных весов?

— Где расположен центр тяжести дуги окружности?

— Каким графическим построением можно найти центр тяжести треугольника?

— Запишите формулу, определяющую центр тяжести кругового сектора.

— Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

— По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

— Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

— Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

— Какими вспомогательными теоремами пользуются при определении положения центра тяжести?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9996 — | 7761 — или читать все.

Центр тяжести дуги окружности

Дуга имеет ось симметрии. Центр тяжести лежит на этой оси, т.е. yC = 0.

dl – элемент дуги, dl = Rdφ, R – радиус окружности, x = Rcosφ, L = 2αR,

Центр тяжести кругового сектора

Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox, на которой находится центр тяжести.

Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R.

Центр тяжести сектора совпадает с центром тяжести дуги AB:

37. Кинематика. Кинематика точки. Способы задания движения точки.

Кинематика – раздел механики, в котором изучаются движение материальных тел с геометрической точки зрения, без учета массы и действующих на них сил. Способы задания движения точки: 1) естественный, 2) координатный, 3) векторный.

Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материпльных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Естественный сп. указывается траектория точки, закон ее движения по этой траектории, начало и направление отсчета дуговой координаты: s=f(t) – закон движения точки. При прямолинейном движении: х=f(t).

Координатный сп. положение точки в пространстве определяется тремя координатами, изменения которых определяют закон движения точки: x=f1(t), y=f2(t), z=f3(t).

Если движение в плоскости, то два уравнения движения. Уравнения движения описывают уравнение траектории в параметрической форме. Исключив из уравнений параметр t, получаем уравнение траектории в обычном виде:f(x,y)=0 (для плоск-ти).

Векторный сп. положение точки определяется ее радиус-вектором , проведенным из какого-либо центра. Кривая, которая вычерчивается концом какого-либо вектора, назыв. годографом этого вектора. Т.е. траектория – годограф радиус-вектора.

Читайте также:  Поиск телефона по гугл аккаунту на карте

38.Связь между координатным и векторным, координатным и естественным способами задания движения точки.

СВЯЗЬ ВЕКТОРНОГО СПОСОБА С КООРДИНАТНЫМ И ЕСТЕСТВЕННЫМ выражается соотношениями:

где — орт касательной к траектории в данной точке, направленный в сторону отсчета расстояний, — орт нормали к траектории в данной точке, направленный в сторону центра кривизны (см. рис. 3).

СВЯЗЬ КООРДИНАТНОГО СПОСОБА С ЕСТЕСТВЕННЫМ. Уравнение траектории f(x, y)=z; f1(x, z)=y получается из уравнений движения в координатной форме посредством исключения времени t. Дополнительным анализом значений, которые могут принимать координаты точки, определяется тот участок кривой , который является траекторией. Например, если движение точки задано уравнениями: x=sin t; y=sin 2 t=x 2 , то траекторией точки является тот участок параболы у=х 2 , для которого -1≤x≤+1, 0≤x≤1. Начало и направление отсчета расстояний выбираются произвольно, этим в дальнейшем определяется знак скорости и величина и знак начального расстояния s.

Закон движения определяется зависимостью:

знак + или — определяется в зависимости от принятого направления отсчета расстояний.

Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения

Вектор скорости (v) — это расстояние, которое тело проходит в определенном направлении за единицу времени. Обратите внимание, что определение вектора скорости очень похоже на определение скорости, за исключением одного важного различия: скорость тела не указывает направление движения, а вектор скорости тела указывает и скорость, и направление движения. Следовательно, необходимы две переменные, которые описывают вектор скорости тела: скорость и направление. Физические величины, у которых есть значение и направление, называют векторными величинами.

Вектор скорости тела может время от времени изменяться. Если или его скорость, или направление изменяются, скорость тела также меняется. Постоянный вектор скорости подразумевает неизменную скорость и неизменное направление, тогда как термин «постоянная скорость» подразумевает только неизменное значение, не принимая во внимание направление. Термин «вектор скорости» часто используется попеременно с термином «скорость». Они оба выражают расстояние, которое тело проходит в единицу времени

Ускорение точки – это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени. Ускорение характеризует изменение вектора скорости по величине и направлению и направлено в сторону вогнутости траектории.

это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = (здесь – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = . Тогда определить ускорение можно так:

Смотрите также решения задач по нахождению центра тяжести в онлайн решебниках Яблонского (С.8) и Мещерского (§ 9).

Центр тяжести – точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил (Е. М. Никитин, § 42). Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
xc = (∑ Gixi) / ∑ Gi;
(1) yc = (∑ Giyi) / ∑ Gi;
zc = (∑ Gizi) / ∑ Gi.

Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес Gi каждого отрезка li можно представить в виде произведения
Gi = lid,
где d – постоянный для всей фигуры вес единицы длины материала.

После подстановки в формулы (1) вместо Gi их значений lid постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий , примут вид:
xc = (∑ lixi) / ∑ li;
(2) yc = (∑ liyi) / ∑ li;
zc = (∑ lizi) / ∑ li.

Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174), то вес каждой плоскости (поверхности) можно представить так:
Gi = Fip,
где Fi – площади каждой поверхности, а p – вес единицы площади фигуры.

После подстановки этого значения Gi в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей :
xc = (∑ Fixi) / ∑ Fi;
(3) yc = (∑ Fiyi) / ∑ Fi;
zc = (∑ Fizi) / ∑ Fi.

Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
Gi = Viγ,
где Vi – объем каждой части, а γ – вес единицы объема тела.

Читайте также:  Пропускная способность сети ethernet

После подстановки значений Gi в формулы (1) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов :
xc = (∑ Vixi) / ∑ Vi;
(4) yc = (∑ Viyi) / ∑ Vi;
zc = (∑ Vizi) / ∑ Vi.

При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.

Если известен радиус дуги r и центральный угол 2α, стягиваемый дугой и выраженный в радианах, то положение центра тяжести C (рис. 176, а) относительно центра дуги O определится формулой:
(5) xc = (r sin α)/α.

Если же задана хорда AB=b дуги, то в формуле (5) можно произвести замену
sin α = b/(2r)
и тогда
(5а) xc = b/(2α).

В частном случае для полуокружности обе формулы примут вид (рис. 176, б):
(5б) xc = OC = 2r/π = d/π.

Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы:
(6) xc = (2r sin α)/(3α).

Если же задана хорда сектора, то:
(6а) xc = b/(3α).

В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
(6б) xc = OC = 4r/(3π) = 2d/(3π).

Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.

У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).

При решении задач на определение положения центра тяжести любого однородного тела, составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:

1) выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;

2) разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;

3) определить или длины, или площади, или объемы составных частей;

4) выбрать расположение осей координат;

5) определить координаты центров тяжести составных частей;

6) найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;

7) по найденным координатам указать на рисунке положение центра тяжести тела.

§ 23. Определение положения центра тяжести тела, составленного из тонких однородных стержней

§ 24. Определение положения центра тяжести фигур, составленных из пластинок

В последней задаче, а также в задачах, приведенных в предыдущем параграфе, расчленение фигур на составные части не вызывает особых затруднений. Но иногда фигура имеет такой вид, который позволяет разделить ее на составные части несколькими способами, например тонкую пластинку прямоугольной формы с треугольным вырезом (рис. 183). При определении положения центра тяжести такой пластинки ее площадь можно разделить на четыре прямоугольника (1, 2, 3 и 4) и один прямоугольный треугольник 5 – несколькими способами. Два варианта показаны на рис. 183, а и б.

Наиболее рациональным является тот способ деления фигуры на составные части, при котором образуется наименьшее их число. Если в фигуре есть вырезы, то их можно также включать в число составных частей фигуры, но площадь вырезанной части считать отрицательной. Поэтому такое деление получило название способа отрицательных площадей.

Пластинка на рис. 183, в делится при помощи этого способа всего на две части: прямоугольник 1 с площадью всей пластинки, как будто она целая, и треугольник 2 с площадью, которую считаем отрицательной.

§ 25. Определение положения центра тяжести сечений, составленных из профилей стандартного проката

При решении задач, приведенных в этом параграфе, нужно пользоваться таблицами из ГОСТа на прокатную сталь: ГОСТ 8509–57, ГОСТ 8510–57, ГОСТ 8239–56, ГОСТ 8240–56.

Эти таблицы для каждого профиля содержат их размеры и площадь, а для уголков и швеллера, кроме того, – координаты центров тяжести.

§ 26. Определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму

Чтобы решать задачи на определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму, необходимо иметь навыки определения координат центра тяжести фигур, составленных из линий или площадей.

Ссылка на основную публикацию
Функция плотности распределения пуассона
На этой странице мы собрали примеры решения учебных задач, где используется распределение Пуассона. Краткая теория Рассмотрим некоторый поток событий, в...
Фоллаут 76 официальный сайт на русском
Игра Fallout 76 Модификация силовой брони и оружия в честь 300-летия США Голова Волт-Боя Патриотический костюм американца Праздничное приветствие Волт-Боя...
Фольксваген тигуан 2 литра механика
Все минусы Фольксваген Тигуан 2018-2019 ➖ Качество отделочных материалов ➖ Расход топлива Плюсы ➕ Динамика ➕ Управляемость ➕ Удобный салон...
Функция распределения случайного времени безотказной работы радиоаппаратуры
На странице Непрерывная случайная величина мы разобрали примеры решений для произвольно заданных законов распределения (многочлены, логарифмы и т.п.). Здесь же...
Adblock detector