Чем отличается log от lg

Чем отличается log от lg

Если b = a c c = logab, a,b,c принадлежат к действительным числам, b > 0, a > 0, a ≠ 1
a основа логарифма
Например: 2 3 = 8 => log28 = 3

Стандартное обозначение логарифма с базой 10(десятичного логарифма) и e .

Свойства логарифма

$log_a(b cdot c) = log_ab + log_ac$ показать пример

$log_afrac = log_ab — log_ac$ показать пример

$log_ab^n = n cdot log_ab$ показать пример

$log_bc = frac<log_ac><log_ab>$ показать пример

$log_b = frac<1>log_ab, n
e0$

loga(b ± c) — формула не существует

Антилогаритмуване

logab = logac ⇔ b = c
logab = c ⇔ a c = b, который b > 0, a > 0 и a ≠ 1

logab > logac ⇔ если a > 1, то b > c,
если 0 2 =

График логарифма

Отсюда видно, что когда x = 1 , log = 0 ; где x -> 0 => log -> -∞ ; когда x -> ∞ log -> ∞

За основание логарифмов нередко берут цифру десять. Логарифмы чисел по основанию десять именуют десятичными. При проведении вычислений с десятичным логарифмом общепринято оперировать знаком lg, а не log; при этом число десять, определяющие основание, не указывают. Так, заменяем log10105 на упрощенное lg105; а log102 на lg2.

Для десятичных логарифмов типичны те же особенности, которые есть у логарифмов при основании, большем единицы. А именно, десятичные логарифмы характеризуются исключительно для положительных чисел. Десятичные логарифмы чисел, больших единицы, положительны, а чисел, меньших единицы, отрицательны; из двух не отрицательных чисел большему эквивалентен и больший десятичный логарифм и т. д. Дополнительно, десятичные логарифмы имеют отличительные черты и своеобразные признаки, которыми и поясняется, зачем в качестве основания логарифмов комфортно предпочитать именно цифру десять.

Перед тем как разобрать эти свойства, ознакомимся с нижеследующими формулировками.

Целая часть десятичного логарифма числа а именуется характеристикой, а дробная — мантиссой этого логарифма.

Характеристика десятичного логарифма числа а указывается как [lg а], а мантисса как а>.

Возьмем, скажем, lg 2 ≈ 0,3010.Соответственно[lg 2] = 0, ≈ 0,3010.

Подобно и для lg 543,1 ≈2,7349. Соответственно,[lg 543,1] = 2, ≈ 0,7349.

Достаточно повсеместно употребляется вычисление десятичных логарифмов положительных чисел по таблицам.

Характерные признаки десятичных логарифмов.

Первый признак десятичного логарифма. Десятичный логарифм целого не отрицательного числа, представленного единицей со следующими нулями, есть целое положительное число, равное численности нулей в записи выбранного числа.

Возьмем, lg 100 = 2, lg 1 00000 = 5.

То а= 10 n , из чего получаем

Второй признак. Десятичный логарифм положительной десятичной дроби, показанный единицей с предыдущими нулями, равен — п, где п — численность нулей в представлении этого числа, учитывая и нуль целых.

Рассмотрим, lg 0,001 = — 3, lg 0,000001 =-6.

,

То a= 10 -n и получается

Третий признак. Характеристика десятичного логарифма не отрицательного числа, большего единицы, равна численности цифр в целой части этого числа исключая одну.

Разберем данный признак 1) Характеристика логарифма lg 75,631 приравнена к 1.

Из чего делаем обобщение

lg 10 n -1 lgа n .,

n-1 n ,то десятичный логарифм его возрастет на п.

Действительно, по формуле логарифма произведения

lg (739,15 •100) = lg 739,15 + 2;

lg (28 •10000) = lg 28 + 4.

Перемещение запятой в положительной десятичной дроби на п знаков вправо равноценно операции перемножения заданной дроби с 10 n . Следовательно, при перемещении запятой в положительной десятичной дроби на п знаков вправо десятичный логарифм возрастет на п.

Шестой признак. Если поделить число на 10 n , то десятичный логарифм уменьшается на п.

lg 0,46 /1000 = lg 0,46 — 3.

При перемещении запятой в положительной десятичной дроби на п знаков влево десятичный логарифм уменьшается на п.

Например, lg 0,3567 = lg 35,67 -2;lg 0,00054 = lg 0,54 -3.

Все обоснованные ранее признаки десятичных логарифмов касались их характеристики. Далее разберем признаки мантиссы десятичных логарифмов.

Седьмой признак десятичного логарифма. Мантисса десятичного логарифма положительного числа не меняется, если умножить это число на 10 n с заданным целым показателем п.

Обоснованно, что при заданном целом п (как положительном, так и отрицательном)

Но дробная часть числа не меняется при прибавлении к нему целого числа.

Смещение запятой в десятичной дроби вправо или влево равнозначно операции перемножения этой дроби на степень числа десять с целым показателем п (положительным или отрицательным). И следовательно, при смещении запятой в положительной десятичной дроби влево или вправо мантисса десятичного логарифма этой дроби не меняется.

log — это обозначение любого логарифма

логарифм числа 5 по основанию6

а есть два уникальных особенных

[latex]ln [/latex] — натуральный логарифм по основанию числа е

[latex]lg x=log_ <10>x[/latex]

т.е. lg — это десятичный логарифм, один особенный случай логарифма log

Если ответ по предмету Математика отсутствует или он оказался неправильным, то попробуй воспользоваться поиском других ответов во всей базе сайта.

Читайте также:  Как открыть полную версию facebook
Ссылка на основную публикацию
Чаша для мультиварки redmond rmc 250
Данный товар недоступен для доставки в Ваш регион Мы всегда стремимся к лучшему, чтобы радовать своих покупателей самыми выгодными ценами....
Функция плотности распределения пуассона
На этой странице мы собрали примеры решения учебных задач, где используется распределение Пуассона. Краткая теория Рассмотрим некоторый поток событий, в...
Функция распределения случайного времени безотказной работы радиоаппаратуры
На странице Непрерывная случайная величина мы разобрали примеры решений для произвольно заданных законов распределения (многочлены, логарифмы и т.п.). Здесь же...
Чего трубку не берешь
Мне не нравиться когда ты не берешь трубку или сбрасываешь вызов. Если мне не изменяет память, я об этом тебе...
Adblock detector