Числа которые делятся сами на себя

Числа которые делятся сами на себя

Простые числа

Простое число — это натуральное (целое положительное) число , которое делится без остатка только на два натуральных числа: на и на само себя. Иными словами, простое число имеет ровно два натуральных делителя: и само число .

В силу определения, множество всех делителей простого числа является двухэлементным, т.е. представляет собой множество .

Множество всех простых чисел обозначают символом . Таким образом, в силу определения множества простых чисел, мы можем записать: .

Последовательность простых чисел выглядит так:

Основная теорема арифметики

Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы, представимо в виде произведения простых чисел, причём единственным способом с точностью до порядка следования сомножителей. Таким образом, простые числа являются элементарными «строительными блоками» множества натуральных чисел.

Разложение натурального числа 1" title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: -1px;" /> в произведение простых чисел называют каноническим:

где — простое число, и . Например, каноническое разложение натурального числа выглядит так: .

Представление натурального числа в виде произведения простых также называют факторизацией числа.

Свойства простых чисел

  • Любое натуральное число либо делится на простое число , либо взаимно просто с ним (то есть НОД).
  • Произведение натуральных чисел делится на простое число тогда и только тогда, когда хотя бы одно из них делится на это простое число.
  • Простых чисел бесконечно много (не существует самого большого простого числа).
  • Если натуральное число не делится ни на одно простое число, квадрат которого не превосходит это натуральное число, то оно само является простым.
  • Если — простое число, а — натуральное, то делится на (малая теорема Ферма).
  • Если 1" title="Rendered by QuickLaTeX.com" height="13" width="42" style="vertical-align: -1px;" /> — натуральное число, то существует такое простое число , что (постулат Бертрана).
  • Любое простое число 3" title="Rendered by QuickLaTeX.com" height="16" width="43" style="vertical-align: -4px;" /> представимо в виде .
  • Если 3" title="Rendered by QuickLaTeX.com" height="16" width="43" style="vertical-align: -4px;" /> — простое число, то кратно .

Решето Эратосфена

Одним из наиболее известных алгоритмов поиска и распознавания простых чисел является решето Эратосфена. Так этот алгоритм был назван в честь греческого математика Эратосфена Киренского, которого считают автором алгоритма.

Для нахождения всех простых чисел, меньших заданного числа , следуя методу Эратосфена, нужно выполнить следующие шаги:

Шаг 1. Выписать подряд все натуральные числа от двух до , т.е. .
Шаг 2. Присвоить переменной значение , то есть значение равное наименьшему простому числу.
Шаг 3. Вычеркнуть в списке все числа от до кратные , то есть числа: .
Шаг 4. Найти первое незачёркнутое число в списке, большее , и присвоить переменной значение этого числа.
Шаг 5. Повторить шаги 3 и 4 до достижения числа .

Процесс применения алгоритма будет выглядеть следующим образом:

Все оставшиеся незачёркнутые числа в списке по завершении процесса применения алгоритма будут представлять собой множество простых чисел от до .

Гипотеза Гольдбаха

Обложка книги «Дядюшка Петрос и гипотеза Гольдбаха»

Несмотря на то, что простые числа изучаются математиками достаточно давно, на сегодняшний день остаются нерешёнными многие связанные с ними проблемы. Одной из наиболее известных нерешённых проблем является гипотеза Гольдбаха, которая формулируется следующим образом:

  • Верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел (бинарная гипотеза Гольдбаха)?
  • Верно ли, что каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел (тернарная гипотеза Гольдбаха)?

Следует сказать, что тернарная гипотеза Гольдбаха является частным случаем бинарной гипотезы Гольдбаха, или, как говорят математики, тернарная гипотеза Гольдбаха является более слабой, чем бинарная гипотеза Гольдбаха.

Гипотеза Гольдбаха получила широкую известность за пределами математического сообщества в 2000-м году благодаря рекламному маркетинговому трюку издательских компаний Bloomsbury USA (США) и Faber and Faber (Великобритания). Указанные издательства, выпустив книгу «Uncle Petros and Goldbach’s Conjecture» («Дядюшка Петрос и гипотеза Гольдбаха»), пообещали выплатить в течение 2-х лет с момента издания книги приз 1 миллион долларов США тому, кто докажет гипотезу Гольдбаха. Иногда упомянутый приз от издательств путают с премиями за решение «Задач тысячелетия» (Millennium Prize Problems). Не стоит заблужаться, гипотеза Гольдбаха не отнесена «Институтом Клэя» к «задачам тысячелетия», хотя и является при этом тесно связанной с гипотезой Римана — одной из «задач тысячелетия».

Книга «Простые числа. Долгая дорога к бесконечности»

Обложка книги «Мир математики. Простые числа. Долгая дорога к бесконечности»

Дополнительно рекомендую прочесть увлекательную научно-популярную книгу «Мир математики. Простые числа. Долгая дорога к бесконечности», в аннотации к которой сказано: «Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел».

Читайте также:  Лучшие стилусы для рисования

Дополнительно процитирую начало второй главы этой книги: «Простые числа представляют из себя одну из важных тем, которые возвращают нас к самым истокам математики, а затем по пути возрастающей сложности приводят на передний край современной науки. Таким образом, было бы очень полезно проследить увлекательную и сложную историю теории простых чисел: как именно она развивалась, как именно были собраны факты и истины, которые в настоящее время считаются общепринятыми. В этой главе мы увидим, как целые поколения математиков тщательно изучали натуральные числа в поисках правила, предсказывающего появление простых чисел, — правила, которое в процессе поиска становилось все более и более ускользающим. Мы также подробно рассмотрим исторический контекст: в каких условиях математики работали и в какой степени в их работе применялись мистические и полурелигиозные практики, которые совсем не похожи на научные методы, используемые в наше время. Тем не менее медленно и с трудом, но была подготовлена почва для новых воззрений, вдохновлявших Ферма и Эйлера в XVII и XVIII в.в.»

Простое число — это целое число (положительное) из разряда натуральных чисел, которое имеет только 2 разных натуральных делителя. Если сказать по-другому, число p тогда будет простым, когда оно больше единицы и может быть разделено лишь на единицу и на себя самого — p.

Натуральные числа, большие единицы и числа, которые не являются простыми, называют составными числами. Т.о., все натуральные числа делятся на 3 класса: единица (имеет 1 делитель), простые числа (имеют 2 делителя) и составные числа (имеют больше 2-х делителей).

Начало последовательности простых чисел выглядит так:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, …

Если представить натуральные числа как произведение простых, то это будет называться разложение на простые либо факторизация числа.

Самое большое простое число, которое известно.

Самое большое известное простое число — это 2 57885161 — 1. Это число состоит из 17 425 170 десятичных цифр и называется простое число Мерсенна (M57885161).

Некоторые свойства простых чисел.

Допустим, p — простое, и p делит ab, тогда p делит a либо b.

Кольцо вычетов Zn будет называться полем только в случае, если n — простое.

Характеристика всех полей — это нуль либо простое число.

Когда p — простое, а a — натуральное, значит, a p -a можно поделить на p (малая теорема Ферма).

Когда G — конечная группа, у которой порядок |G| делят на p, значит, у G есть элемент порядка p (теорема Коши).

Когда G — конечная группа, и p n — самая высокая степень p, делящая |G|, значит, у G есть подгруппа порядка p n , которая называется силовская подгруппа, кроме того, число силовских подгрупп соответствует pk+1 для некоего целого k (теоремы Силова).

Натуральное p > 1 будет простым лишь в случае, если (p-1)! + 1 можно подулить на p (теорема Вильсона).

Когда n > 1 — натуральное, значит, есть простое p: n 1 — целые взаимно простые числа, содержит нескончаемое число простых чисел (Теорема Дирихле о простых числах в арифметической прогрессии).

Любое простое число, которое большее тройки, можно представить как 6k+1 либо 6k-1, где k — натуральное число. Исходя из этого, когда разность нескольких последовательных простых чисел (при k>1) одинаковая, значит, она точно делится на шесть — к примеру: 251-257-263-269; 199-211-223; 20183-20201-20219.

Когда p > 3 — простое число, значит, p 2 -1 делится на 24 (работает и на нечётных чисел, которые не делятся на три).

Теорема Грина-Тао. Есть бесконечные арифметические прогрессии, которые состоят из простых чисел.

Ни одно простое число нельзя представить как n k -1, где n>2, k>1. Другими словами, число, которое следует за простым, не может быть квадратом либо более высокой степенью с основанием, которое больше двух. Можно сделать вывод, что когда простое число представлено как 2 k -1, значит k — простое.

Читайте также:  Как прошить планшет дома

Ни одно простое число нельзя представить как n 2k+1 +1, где n>1, k>0. Другими словами, число, которое предшествует простому, не может быть кубом либо более высокой нечётной степенью с основанием, которое больше единицы.

Есть многочлены, у которых множество неотрицательных значений при положительных значениях переменных совпадает с множеством простых чисел. Пример:

Этот многочлен содержит 26 переменных, имеет 25. Самая низкая степень для известных многочленов представленного вида — пять при 42 переменных; самое маленькое количество переменных — десять при степени приблизительно 1,6·10 45 .

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а , то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Таблица простых чисел

Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:

Таблица для всех существующих натуральных чисел нереальна, так как их существует бесконечное множество. Когда числа достигают размеров 10000 или 1000000000 , тогда следует задуматься об использовании решета Эратосфена.

Рассмотрим теорему, которая объясняет последнее утверждение.

Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.

Возьмем, что а является натуральным числом, которое больше 1 , b является наименьшим отличным от единицы делителем для числа а . Следует доказать, что b является простым числом при помощи метода противного.

Допустим, что b – составное число. Отсюда имеем, что есть делитель для b , который отличен от 1 как и от b . Такой делитель обозначается как b 1 . Необходимо, чтобы условие 1 b 1 b было выполнено.

Из условия видно, что а делится на b , b делится на b 1 , значит, понятие делимости выражается таким образом: a = b · q и b = b 1 · q 1 , откуда a = b 1 · ( q 1 · q ) , где q и q 1 являются целыми числами. По правилу умножения целых чисел имеем, что произведение целых чисел – целое число с равенством вида a = b 1 · ( q 1 · q ) . Видно, что b 1 – это делитель для числа а . Неравенство 1 b 1 b не соответствует, потому как получим, что b является наименьшим положительным и отличным от 1 делителем а .

Простых чисел бесконечно много.

Предположительно возьмем конечное количество натуральных чисел n и обозначим как p 1 , p 2 , … , p n . Рассмотрим вариант нахождения простого числа, отличного от указанных.

Примем на рассмотрение число р, которое равняется p 1 , p 2 , … , p n + 1 . Оно не равняется каждому из чисел, соответствующих простым числам вида p 1 , p 2 , … , p n . Число р является простым. Тогда считается, что теорема доказана. Если оно составное, тогда нужно принять обозначение p n + 1 и показать несовпадение делителя ни с одним из p 1 , p 2 , … , p n .

Если это было бы не так, тогда, исходя из свойства делимости произведения p 1 , p 2 , … , p n , получим, что оно делилось бы на p n + 1 . Заметим, что на выражение p n + 1 делится число р равняется сумме p 1 , p 2 , … , p n + 1 . Получим, что на выражение p n + 1 должно делиться второе слагаемое этой суммы, которое равняется 1 , но это невозможно.

Читайте также:  После гулянки на работе

Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.

Так как простых чисел очень много, то таблицы ограничивают числами 100 , 1000 , 10000 и так далее.

Решето Эратосфена

При составлении таблицы простых чисел следует учитывать то, что для такой задачи необходима последовательная проверка чисел, начиная с 2 до 100 . При отсутствии делителя оно фиксируется в таблицу, если оно составное, то в таблицу не заносится.

Если начать с числа 2 , то оно имеет только 2 делителя: 2 и 1, значит, его можно занести в таблицу. Также и с числом 3 . Число 4 является составным, следует разложить его еще на 2 и 2 . Число 5 является простым, значит, можно зафиксировать в таблице. Так выполнять вплоть до числа 100 .

Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.

Способ при помощи решета Эратосфена считают самым удобным. Рассмотрим на примере таблиц, приведенных ниже. Для начала записываются числа 2 , 3 , 4 , … , 50 .

Теперь необходимо зачеркнуть все числа, которые кратны 2 . Произвести последовательное зачеркивание. Получим таблицу вида:

Далее вычеркиваем все числа, кратные 3 . Получаем таблицу вида:

Переходим к вычеркиванию чисел, кратных 5 . Получим:

Вычеркиваем числа, кратные 7 , 11 . В конечном итоге таблица получает вид

Перейдем к формулировке теоремы.

Наименьший положительный и отличный от 1 делитель основного числа а не превосходит a , где a является арифметическим корнем заданного числа.

Необходимо обозначить b наименьший делитель составного числа а . Существует такое целое число q , где a = b · q , причем имеем, что b ≤ q . Недопустимо неравенство вида b > q , так как происходит нарушение условия. Обе части неравенства b ≤ q следует умножить на любое положительное число b , не равное 1 . Получаем, что b · b ≤ b · q , где b 2 ≤ a и b ≤ a .

Из доказанной теоремы видно, что вычеркивание чисел в таблице приводит к тому, что необходимо начинать с числа , которое равняется b 2 и удовлетворяет неравенству b 2 ≤ a . То есть, если вычеркнуть числа, кратные 2 , то процесс начинается с 4 , а кратных 3 – с 9 и так далее до 100 .

Составление такой таблицы при помощи теоремы Эратосфена говорит о том, что при вычеркивании всех составных чисел, останутся простые, которые не превосходят n . В примере, где n = 50 , у нас имеется, что n = 50 . Отсюда и получаем, что решето Эратосфена отсеивает все составные числа, которые по значению не больше значения корня из 50 . Поиск чисел производится при помощи вычеркивания.

Данное число простое или составное?

Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.

Доказать что число 898989898989898989 является составным.

Сумма цифр заданного числа равняется 9 · 8 + 9 · 9 = 9 · 17 . Значит, число 9 · 17 делится на 9 , исходя из признака делимости на 9 . Отсюда следует, что оно составное.

Такие признаки не способны доказать простоту числа. Если нужна проверка, следует производить другие действия. Самый подходящий способ – это перебор чисел. В течение процесса можно найти простые и составные числа. То есть числа по значению не должны превосходить a . То есть число а необходимо разложить на простые множители. если это будет выполнено, тогда число а можно считать простым.

Определить составное или простое число 11723 .

Теперь необходимо найти все делители для числа 11723 . Необходимо оценить 11723 .

Отсюда видим, что 11723 200 , то 200 2 = 40 000 , а 11 723 40 000 . Получаем, что делители для 11 723 меньше числа 200 .

Для более точной оценки числа 11723 необходимо записать выражение 108 2 = 11 664 , а 109 2 = 11 881 , то 108 2 11 723 109 2 . Отсюда следует, что 11723 109 . Видно, что любое число, которое меньше 109 считается делителем для заданного числа.

При разложении получим, что 2 , 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 , 101 , 103 , 107 – это все простые числа. Весь данный процесс можно изобразить как деление столбиком. То есть разделить 11723 на 19 . Число 19 является одним из его множителей, так как получим деление без остатка. Изобразим деление столбиком:

Отсюда следует, что 11723 является составным числом, потому как кроме себя и 1 имеет делитель 19 .

Ответ: 11723 является составным числом.

Ссылка на основную публикацию
Четкие аватарки для стима
Помощь в выборе аватарки Не знаете, какими могут быть аватарки для стима и какую из них лучше выбрать? Где искать...
Чаша для мультиварки redmond rmc 250
Данный товар недоступен для доставки в Ваш регион Мы всегда стремимся к лучшему, чтобы радовать своих покупателей самыми выгодными ценами....
Чего трубку не берешь
Мне не нравиться когда ты не берешь трубку или сбрасываешь вызов. Если мне не изменяет память, я об этом тебе...
Четырехугольник можно вписать в окружность если
Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности. Очевидно, эта окружность будет называться описанной вокруг четырехугольника. Описанный...
Adblock detector