Что значит взаимо простые числа

Что значит взаимо простые числа

Информация этой статьи покрывает тему «взаимно простые числа». Сначала дано определение двух взаимно простых чисел, а также определение трех и большего количества взаимно простых чисел. После этого приведены примеры взаимно простых чисел, и показано, как доказать, что данные числа являются взаимно простыми. Дальше перечислены и доказаны основные свойства взаимно простых чисел. В заключение упомянуты попарно простые числа, так как они тесно связаны со взаимно простыми числами.

Навигация по странице.

Взаимно простые числа – определение и примеры

Понятие взаимно простых чисел дается как для двух целых чисел, так и для их большего числа. Сначала приведем определение двух взаимно простых чисел. Это определение дается через наибольший общий делитель чисел, так что рекомендуем сначала разобраться с материалом указанной статьи.

Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице, то есть, НОД(a, b)=1 .

Из определения взаимно простых чисел следует, что два взаимно простых числа имеют лишь один положительный общий делитель, который равен единице. А всего общих делителей у двух взаимно простых чисел две штуки – это числа 1 и −1 .

Приведем примеры взаимно простых чисел.

Числа 5 и 11 являются взаимно простыми. Действительно, и 5 и 11 – простые числа, следовательно, их положительным общим делителем является только число 1 , что подтверждает взаимную простоту чисел 5 и 11 .

Заметим, что два простых числа всегда являются взаимно простыми. Однако, два числа не обязательно должны быть простыми, чтобы быть взаимно простыми. Либо одно из них, либо они оба могут быть составными и при этом являться взаимно простыми. Приведем пример, иллюстрирующий это высказывание.

Два составных числа 8 и −9 являются взаимно простыми. Обоснуем это. Для этого найдем наибольший общий делитель этих чисел, записав все делители чисел 8 и −9 (при необходимости смотрите статью число делителей числа, все делители числа). Делителями восьмерки является любое из чисел ±1 , ±2 , ±4 , ±8 ; все делители −9 есть числа ±1 , ±3 , ±9 . Следовательно, НОД(8, −9)=1 , поэтому, по определению 8 и −9 – два взаимно простых числа.

А вот числа 45 и 500 не являются взаимно простыми, так как имеют положительный общий делитель, отличный от единицы, которым является число 5 (делимость чисел 45 и 500 на 5 очевидна, если знать признак делимости на 5). Другой парой не взаимно простых чисел является пара 3 и −201 , так как 3 есть их общий положительный делитель (делимость числа −201 на 3 легко устанавливается при помощи признака делимости на 3).

Читайте также:  Переделать ворд в джипег

Часто встречаются задания, в которых требуется доказать, что данные целые числа являются взаимно простыми. Доказательство сводится к вычислению наибольшего общего делителя данных чисел и проверке НОД на его равенство единице. Полезно также перед вычислением НОД заглянуть в таблицу простых чисел: вдруг исходные целые числа являются простыми, а мы знаем, что наибольший общий делитель простых чисел равен единице. Рассмотрим решение примера.

Докажите, что числа 84 и 275 являются взаимно простыми.

Очевидно, что данные числа не являются простыми, поэтому мы не можем сразу говорить о взаимной простоте чисел 84 и 275 , и нам придется вычислять НОД. Используем алгоритм Евклида для нахождения НОД: 275=84·3+23 , 84=23·3+15 , 23=15·1+8 , 15=8·1+7 , 8=7·1+1 , 7=7·1 , следовательно, НОД(84, 275)=1 . Этим доказано, что числа 84 и 275 взаимно простые.

Определение взаимно простых чисел можно расширить для трех и большего количества чисел.

Целые числа a1, a2, …, ak , k>2 называются взаимно простыми, если наибольший общий делитель этих чисел равен единице.

Из озвученного определения следует, что если некоторый набор целых чисел имеет положительный общий делитель, отличный от единицы, то данные целые числа не являются взаимно простыми.

Приведем примеры. Три целых числа −99 , 17 и −27 являются взаимно простыми. Любая совокупность простых чисел составляет набор взаимно простых чисел, к примеру, 2 , 3 , 11 , 19 , 151 , 293 и 677 – взаимно простые числа. А четыре числа 12 , −9 , 900 и −72 не являются взаимно простыми, так как они имеют положительный общий делитель 3 , отличный от 1 . Числа 17 , 85 и 187 тоже не взаимно простые, так как каждое из них делится на 17 .

Обычно далеко не очевидно, что некоторые числа являются взаимно простыми, и этот факт приходится доказывать. Для выяснения, являются ли данные числа взаимно простыми, приходится находить наибольший общий делитель этих чисел, и на основании определения взаимно простых чисел делать вывод.

Являются ли числа 331 , 463 и 733 взаимно простыми?

Заглянув в таблицу простых чисел, мы обнаружим, что каждое из чисел 331 , 463 и 733 – простое. Следовательно, они имеют единственный положительный общий делитель – единицу. Таким образом, три числа 331 , 463 и 733 есть взаимно простые числа.

Простые числа

Что такое простое число? Простое число делится только на единицу и на само себя. Например, число 13 является простым, так как нацело делится только на 1 и на 13. Секрет в том, что практически каждое число можно разделить на другое число. Но в простых числах важно именно деление нацело, дробные частные и деление с остатком не рассматривается.

Читайте также:  Сборка пк за 70000 рублей

Простые числа в знаменателях дробей означают, что для нахождения общего знаменателя нужно перемножить эти числа между собой. Разложить простые числа на множители невозможно. Поэтому НОД двух простых чисел это их произведение.

Числа, которые содержат в себе больше двух множителей, то есть делятся на несколько чисел, называются сложными. Сложные числа состоят из перемноженных простых.

Взаимно простые числа

Взаимно простыми числами называются числа, наибольший общий делитель которых равен единицы. Доказать факт того, что числа являются взаимно простыми можно только с помощью разложения чисел на простые множители. Если у чисел нет общих множителей, кроме 1, то они будут взаимно простыми.

При этом сами по себе взаимно простые числа могут быть сложными. Важен именно НОД двух чисел.

Нужно учитывать, что взаимно простыми могут быть не только два числа, но и 3, 4, 10 – любое множество чисел может быть взаимно простым.

Как определить взаимно простые числа?

Для того чтобы определить взаимно простые числа, можно воспользоваться двумя алгоритмами:

  • Разложить каждое из чисел на множители и искать общие простые множители. Если такие есть, то числа не являются взаимно простыми. Если общих множителей нет, числа можно считать взаимно простыми.
  • Делить каждое из чисел поочередно на простые множители. Этот способ проще в исполнении, так как не требует большой внимательности и сосредоточенности. Но такая проверка не подойдет для больших чисел, слишком долгой может получится проверка. Поэтому более надежным будет использовать первый вариант.

Относительно друг друга два простых числа всегда будут взаимно простыми. А если одно из чисел, делится на другое нацело, то эти числа точно не являются взаимно простыми.

Пример

Определим, являются ли взаимно простыми числа 1729 и 282

Определение начинается с разложения на множители:

Обратите внимание, что для разложения таких чисел придется использовать метод перебора. Согласно таблице простых чисел каждый множитель проверяется, после чего деление продолжается. Подбирать множители нужно от маленьких чисел к большим, то есть от 2 и выше.

Как видно, общих множителей у двух чисел нет. Это значит, что числа можно считать взаимно простыми. Не нужно пугаться, если среди множителей попадаются достаточно большие числа. Среди учеников существует миф, что простые числа редко бывают больше 20, это не так. Просто такие числа проще использовать в задачах, чтобы набить руку. На экзамене или в контрольной сложность числа для разложения может быть абсолютно любой

Читайте также:  Как включить аон на домашнем телефоне

Что мы узнали?

Мы поговорили о простых числах. Выяснили, что такое взаимно простые числа и обговорили некоторые их свойства. Привели примеры взаимно простых чисел. Обговорили неправильные мнения по поводу простых и взаимно простых чисел.

ВЗАИМНО ПРОСТЫЕ ЧИСЛА — натуральные числа, не имеющие общих делителей, отличных от 1; напр., 15 и 16 … Большой Энциклопедический словарь

взаимно-простые числа — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN relative prime … Справочник технического переводчика

Взаимно-простые числа — Два целых числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Содержание 1 Связанные определения 2 Примеры 3 Свойства 4 См. также … Википедия

взаимно простые числа — натуральные числа, не имеющие общих делителей, отличных от 1; например, 15 и 16. * * * ВЗАИМНО ПРОСТЫЕ ЧИСЛА ВЗАИМНО ПРОСТЫЕ ЧИСЛА, натуральные числа, не имеющие общих делителей, отличных от 1; напр., 15 и 16 … Энциклопедический словарь

Взаимно простые числа — несколько целых чисел, таких, что общими делителями для всех этих чисел являются лишь + 1 и 1. Если каждое из этих чисел взаимно просто с каждым другим из них, то говорят, что числа попарно простые (для двух чисел оба понятия совпадают).… … Большая советская энциклопедия

ВЗАИМНО ПРОСТЫЕ ЧИСЛА — целые числа, не имеющие общих (простых) делителей. Наибольший общий делитель В. п. ч. а и b равен единице, это принято обозначать . Если a и b взаимно просты, то существуют такие числа ии v, , , что Понятие взаимной простоты может быть введено… … Математическая энциклопедия

ВЗАИМНО ПРОСТЫЕ ЧИСЛА — натуральные числа, не имеющие общих делителей, отличных от 1; напр., 15 и 16 … Естествознание. Энциклопедический словарь

Простые числа — Простое число это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на… … Википедия

Простые множители — Простое число это натуральное число, которое имеет ровно 2 различных делителя (только 1 и самого себя). Все остальные числа, не равные единице, называются составными. Таким образом, все натуральные числа, за исключением единицы, разбиваются на… … Википедия

Попарно взаимно просты — Два целых числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Содержание 1 Связанные определения 2 Примеры 3 Свойства 4 См. также … Википедия

Ссылка на основную публикацию
Что делать если экран компьютера уменьшился
В этом уроке я покажу, как уменьшить масштаб экрана на компьютере. Мы научимся изменять шрифт в Windows разными способами: через...
Четкие аватарки для стима
Помощь в выборе аватарки Не знаете, какими могут быть аватарки для стима и какую из них лучше выбрать? Где искать...
Четырехугольник можно вписать в окружность если
Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности. Очевидно, эта окружность будет называться описанной вокруг четырехугольника. Описанный...
Что делать когда dns сервер не отвечает
Как настроить роутер, как настроить модем, как настроить оптический терминал. Настройка роутера по http://192.168.1.1 или http://192.168.0.1 DNS сервер не отвечает...
Adblock detector