Домеханический период развития вычислительной техники

Домеханический период развития вычислительной техники

Люди с давних пор испытывали потребность в счете, для чего они использовали пальцы рук, камешки, которые складывали в кучки или располагали в ряд. Человечество училось считать в течение многих веков, передавая и накапливая из поколения в поколение свой опыт.

Появление собственности на землю потребовало определения способов вычисления площади участков, что привело к зарождению геометрии. Общеизвестны достижения Евклида, Пифагора и других греческих ученых в этом направлении. Развитие торговли также ставило все новые задачи. Помимо учета товаров и денежных сумм, появились и более сложные проблемы. Купцам приходилось предпринимать все более дальние путешествия, а для этого требовались средства навигации. Астрономы древности решали и эти задачи. Все в конечном итоге сводилось к расчетам, и чем точнее они были, тем успешнее решались насущные задачи.

Древнейшей техникой счета, которую сама природа предоставила в пользование человеку, был счет на пальцах. От пальцевого счета берет начало пятеричная, десятеричная, а также двадцатеричная системы счисления. Свидетельствами распространения данной техники в Риме является упоминание древнеримского историка Плиния-старшего — на главной римской площади Форуме была воздвигнута гигансткая фигура двуликого бога Януса, пальцы рук которого изображали количество дней в году.

Китайцы, персы, индийцы, перуанцы использовали для представления чисел и счета ремни или веревки с узелками, называвшимися по-другому «куиру».Узелковое письмо представляло несколько связанных между собой шерстяных или хлопчатобумажных ниток. Широкое распространение такой способ получил в области Центраных Анд в эпоху расцвета государства инков Туантинсуйу в XV в. н.э.. Свои счетные веревки инки называли «кипу»

Следующий шаг в развитии вычислительных средств был связан со становлением государств Средиземноморья. Усиление торговых отношений между ними привело к созданию нового инструмента — абака, известного практически у всех народов.

Первоначально на специальной доске в определенном порядке раскладывали однородные предметы (камешки, ракушки, орехи, бобы и т.п.) и пересчитывали их. Для того, чтобы они не скатывались, доска покрывалась слоем песка или пыли. Поэтому абак означает дощечку, покрытую слоем пыли. В своей примитивной форме абак действительно представлял собой такую дощечку. Абак считается первым развитым счетным прибором в истории человечества [2].

Считается, что абак изначально применяли в Древней Греции, Древнем Востоке, в том числе в Вавилоне, Древнем Египте и Финикии. Отсюда разновидности абаков — вавилонский, греческий (V в. до н.э.), римский (V-VI вв. н.э.), египетский, китайский «суаньпань» (VI в. н.э.), японский «соробан» (XV-XVI вв.н.э.), английский (XV в.н.э.).

На рубеже XVI-XVII вв. появляется русский абак — счеты. Русские счеты широко использовались при начальном обучении арифметике в качестве учебного пособия.

После изобретения абака многие изобретатели и естествоиспытатели пытались придумать приспособления, способные облегчить процесс вычислений. Абак удобно использовать для выполнения операций сложения и вычитания. Умножение и деление выполнять с помощью абака гораздо сложнее.

Революцию в области механизации умножения и деления совершил шотландский математик лорд Джон Непер (1550-1617).

Изобретением, относящимся к цифровой вычислительной технике, в 1617 г. Джон Непер предложил инструмент, получивший название «счетные палочки Непера». Они выполнялись в виде прямоугольных брусков, разделенных на десять квадратов, и позволяли выполнять операции умножения, сводя его к сложению. Кроме того, Непер предложил счетную доску для операций умножения, деления, возведения в квадрат и извлечения корня в двоичной системе счисления.

Середина XVII в. считается завершением домеханического периода доэлектронной истории. Рассмотрев основные средства и техники вычисления этого периода, становится понятным, что с древних времен перед человечеством стояли задачи, требовавшие все более возрастающих объемов вычислений (вследствие развития торговли, путешествий, введений налогов и т.п.), что в конечном итоге является предпосылкой бурного развития вычислительной техники и перехода к механизации арифметических операций.

В настоящее время человеку помогают в его деятельности, связанной с обработкой и хранением информации электронные вычислительные машины (ЭВМ), которые появились только в середине ХХ века, но у этих машин были предшественники, так как научная и практическая деятельность человека с самого начала его истории потребовала от него умения вычислять, и чем больше человек узнавал об окружающем его мире, чем сложнее становились орудия его труда, тем больше требовалось ему вычислений, тем больше они занимали его время. Однако, нельзя не согласиться с выдающимся немецким ученым XVII века Г.В. Лейбницем:». недостойно совершенства человеческого, подобно рабам, тратить часы на вычисления». И человечество всю историю своего существования придумывало приспособления, помогающие ему в этом труде.

Развитие вычислительной техники (ВТ) принято делить на следующие этапы:

1. Ручной (домеханический) – с появлением человека разумного (примерно с 50-го тысячелетия до н.э. −).

2. Механический — с начала XVII века.

3. Электромеханический — с 90-х годов XIX века.

4. Электронный — с 40-х годов XX в.

2.1. Ручной период вычислений или период абака

Ручной период автоматизации вычислений начался еще на заре человеческой цивилизации и базировался на использовании частей тела, в первую очередь пальцев рук и ног. Далее стали появляться другие вспомогательные средства счета: палочки, узелки, насечки и т.п. Характерными свойствами этих устройств было то, что в них отсутствовала автоматическая передача чисел из низшего порядка в высший. Выполнение операций сводилось к перекладыванию предметов по определенным правилам. Приспособления этого периода, такие как счетные доски, счеты, суан-пан и другие, объединены одним названием — абак. И, часто домеханический период называют также периодом абака. В те времена задача считалась решенной, если она решалась на абаке.

Размеры абака примерно 40х50 см, на более мелких абаках легко совершить ошибку.

Кроме облегчения вычислений, людям всегда хотелось увеличивать и скорость вычислений.

В конце XIX века М. Свободский, на созданном им абаке (комплекте из 12−30 счетов) извлекал кубический корень из 21-значного числа за 3 минуты.

К домеханическим приспособлениям относятся и палочки Непера, хорошо приспособленные для сложения и вычитания. Абака не были приспособлены для умножения деления, поэтому, открытие логарифмических таблиц Дж. Непером в начале XVII века, позволивших заменить умножение и

деление сложением и вычитанием, явилось следующим этапом развития вычислительных систем домеханического этапа.

Непер предложил специальные счетные палочки, позволяющие производить операции умножения и деления. В основу метода положен способ умножения на бумаге, называющийся решеткой.

Палочки Непера использовались вплоть до XX века. Даже когда появилось множество других приспособлений для счета, изобретатели возвращались к ним вновь и вновь, придумывая разнообразные приборы, основанные на палочках Непера.

Еще одно замечательное устройство этого периода, прослужившее инженерам всего мира около 400 лет — это логарифмическая линейка. Прообразом этой линейки считается логарифмическая шкала Э. Гюнтера.

Логарифмическая линейка постоянно совершенствовалась. Наиболее существенный вклад в ее модификацию внесли У. Отред, Р. Деламейн и французский офицер А. Манхейм.

Логарифмическая линейка является венцом вычислительных инструментов ручного этапа развития ВТ.

2.2. Механический период

За этот период было построено множество машин, которые стали хорошими помощниками при обработке статистических данных, в финансовых расчетах, при вычислениях в научных исследованиях.

Перед первыми создателями механизмов, помогающих в вычислениях, стояли очень трудные задачи, например: как физически (предметно) представить числа в машине? Как осуществить ввод исходных числовых данных? Как выполнить арифметические операции механическим путем? Как осуществлять перенос десятков? Как представить вычислителю вводимые исходные данные и результаты вычислений? Вопросы, которые мы не задаем себе сегодня, пользуясь карманными калькуляторами или спидометром.

Читайте также:  Стрелочки символы в ворде

Наиболее типичными представителями вычислительных машин этого периода являются арифмометры .

Основными особенностями арифмометров являются автоматическая передача десятков и наличие подвижной каретки, что обеспечивает умножение.

Одну из первых механических счетных машин предложил в 1623 г. В. Шиккард. Он описал свою машину в письмах к И. Кеплеру, которые были обнаружены в 1958 году. По ним Б. Фрейтаг-Лорингоф изготовил модели машины Шиккарда.

Машина Шиккарда состояла из трех частей: суммирующего устройства (для сложения и вычитания), множительного устройства и механизма для фиксации промежуточных результатов. Принципиально новым было шестиразрядное суммирующее устройство, которое состояло из соединения зубчатых передач. Для каждого разряда была своя ось, на которой находилось по одной шестерне с десятью зубцами и по одному однозубому колесу (“пальцу”), служившему для дискретной передачи десятка в следующий разряд.

В машине Шиккарда просматривается устройство современных ЭВМ, в ней есть прототип запоминающих устройств современных машин.

В 1641 году Блез Паскаль сконструировал первый образец своей суммирующей машины. Всего он изготовил несколько десятков машин, которые вошли в историю под именем суммирующих машин Паскаля . С

принципиальной точки зрения машины Паскаля не отличались от машины Шиккарда, хотя Паскаль о ней ничего не знал, однако, технически они были совершеннее машины Шиккарда. Машина Паскаля проигрывала в быстродействии и имела небольшую емкость (6-8 разрядов), имела размер примерно 40х15х10 см, но она была более надежна, чем машина Шиккарда и многие другие машины, которые стали создаваться последователями Паскаля.

Первый арифмометр или первую машину, которая могла не только суммировать и вычитать, но умножать и делить, сконструировал и построил Г. Лейбниц. В 1673 году он представил свою машину в Парижскую академию. Сложение и вычитание в машине Лейбница осуществлялось при помощи зубчатых передач и сводилось к набору чисел и считке результата. Основу машины составляли ступенчатые валики-цилиндрики с зубцами разной длины (эти цилиндрики и образуют валик, на котором нанесены зубцы в виде ступенек). Это и изобретение Лейбница было первым осуществлением зубчатого колеса с переменным числом зубцов. Именно такое колесо обеспечивает выполнение умножения и деления.

Новым в машине Лейбница было также разделение машины на подвижную и неподвижную части. Подвижная часть (прототип современной подвижной каретки у арифмометра) позволила производить поразрядное умножение.

Машина Лейбница была очень громоздкой (100х30х25 см), емкость ее

ограничивалась размерами, однако, подвижная каретка повысила скорость выполнения умножения, хотя у нее и отсутствовал механизм гашения: каждое колесо устанавливалось в первоначальное положение самостоятельно, что уменьшало скорость вычисления.

Машина Лейбница также как и машина Паскаля, стала прародительницей многих счетных машин, в том числе и современных арифмометров, которые можно было увидеть в действии вплоть до 70-х годов XX века.

В VII-XVIII в.в. создавалось много счетных машин, которые либо совсем не использовались, либо использовались только самими разработчиками.

В XIX веке было предложено много самых разнообразных машин, но большинство из них не получило распространения, так как их создатели заботились лишь об улучшении отдельных характеристик. Самыми известными из них являются: самосчеты В.Я. Буняковского (1867 г.) — прибор для сложения и вычитания; карманный прибор для сложения Пететина (Франция 1885 г.); арифмометр Л. Болле (1889 г.)

В 1818 году Л. Томас сконструировал, а в 1820 году построил машину, которую впервые назвал арифмометром . Эта машина была настолько удачна,

что выпускалась до конца XIX века и было выпущено более 1500 штук.

В основу арифмометра Томаса был положен ступенчатый валик Лейбница. На нем была довольно большая скорость вычислений: два 8-значных числа можно было умножить примерно за 15 секунд, а разделить 16-значное число на 8-значное — за 25. Надежность машины обеспечивалась контрольным счетчиком, счетчиком оборотов и других устройствами. Машина Томаса была долговечной, она использовалась при расчетах, связанных с подготовкой плана ГОЭЛРО в 1920 году.

Машина Томаса постоянно совершенствовалась, ее размеры уменьшали, делая валики из полуцилиндров, а не из цилиндров, размещали их на разных уровнях.

В музее истории Санкт-Петербурга хранится один экземпляр, созданной в 1878 году П.Л. Чебышевым суммирующей машины. Эта машина имела

столько недостатков, что на ней никто не работал, нет также подтверждений, что на ней работал сам автор. Дело в том, что П.Л. Чебышев не ставил перед собой задачи создания удобной для пользования машины, его задачей было: найти новый принцип на котором могут строиться вычислительные машины. И эту проблему он решил.

Чебышев доказал этой машиной и другими приспособлениями, что вычислительные машины могут быть построены на принципе непрерывной передачи десятков. Этот принцип быстро нашел свое применение во многих счетчиках (например, в спидометрах Теслы).

Несмотря на то, что самыми распространенными счетными машинами механического периода были арифмометры, именно в это время были заложены теоретические основы современных ЭВМ. Прародителями их считаются Чарльз Бэббидж (1792-1871) — английский математик и экономист, и его помощница Августа Ада Лавлейс (1815-1852) — дочь лорда Байрона.

В механический период на автоматизацию выполнения операций обращалось недостаточно внимания. Многие действия должен был выполнять сам вычислитель. Ч. Бэббидж первый выдвинул замысел вычислительной машины с программным управлением, который был заложен им еще в 1834 году в его проект аналитической машины . Свой проект Бэббидж не реализовал, этого не смог сделать в последствии и его сын. Развитие техники к тому времени не позволяло этого: электромеханические реле, появившиеся к этому времени были ненадежны, однако, Бэббидж рассматривал в качестве возможного источника энергии паровые двигатели.

Опередив свое время на сто лет, Бэббидж в статье «О математической производительности счетной машины» подробно описал свой проект. Его аналитическая машина состояла из следующих четырех частей:

1) блок хранения исходных данных и результатов вычислений. Он состоял из набора зубчатых колес, идентифицирующих цифры подобно арифмометру. Колеса объединялись в регистры для хранения многоразрядных десятичных чисел. Этот блок Бэббидж назвал складом ;

2) блок обработки чисел из склада, его Бэббидж назвал мельницей

История вычислительной техники

Всю историю вычислительной техники принято делить на три основных этапа – домеханический, механический, электронно-вычислительный. Эти три периода включают в себя весь прогресс от счета на пальцах до вычислений сверхмощных компьютеров.

Закономерно представить первым желанием любого первобытного человека сосчитать пальцы на руке. С увеличением объёма вычислений появился первый счётный переносной инструмент, похожий на современные счёты. В средние века возникла необходимость в сложных вычислениях, потребовались счётные устройства, способные выполнять большой объём вычислений с высокой точностью.

Первый в мире эскизный рисунок тринадцатиразрядного десятичного суммирующего устройства на основе колес с десятью зубцами принадлежит Леонардо да Винчи.

Считается, что первым реально осуществленным и ставшим известным механическим цифровым вычислительным устройством стала "паскалина" великого французского ученого Блеза Паскаля. Через 30 лет после "паскалины" в 1673 г. появился "арифметический прибор" — двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление.

Прошло еще более ста лет и лишь в конце XYIII века во Франции были осуществлены следующие шаги, имеющие принципиальное значение для дальнейшего развития цифровой вычислительной техники — "программное" с помощью перфокарт управление ткацким станком, созданным Жозефом Жакаром. Эти новшества были использованы англичанином Чарльзом Беббиджем, осуществившим, качественно новый шаг в развитии средств цифровой вычислительной техники — переход от ручного к автоматическому выполнению вычислений по составленной программе.

Читайте также:  Как узнать имя хоста роутера

В 1937 г. Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированной ВМ, впервые применив электронные лампы (300 ламп).

Завершающую точку в создании первых ЭВМ поставили, почти одновременно, в 1949-52 гг. ученые Англии, Советского Союза и США (Морис Уилкс – ЭДСАК, 1949 г. Сергей Лебедев – МЭСМ, 1951 г., Джон Мочли и Преспер Эккерт, Джон фон Нейман – ЭДВАК, 1952 г.), создавшие ЭВМ с хранимой в памяти программой.

На следующем этапе цифровая техника сделала беспрецедентный рывок за счет интеллектуализации ЭВМ, в то время как аналоговая техника не вышла за рамки средств для автоматизации вычислений.

Что касается микроэлектроники, то следует сказать, что размеры электронных компонентов в настоящее время приближаются к пределу — 0,05 микрона.

Счет на пальцах, несомненно, самый древний и наиболее простой способ вычисления. Обнаруженная в раскопках так называемая "вестоницкая кость" с зарубками, оставленная древнем человеком ещё 30 тыс. лет до нашей эры, позволяет историкам предположить, что уже тогда предки современного человека были знакомы с зачатками счета. У многих народов пальцы рук остаются инструментом счета и на более высоких ступенях развития. К числу этих народов принадлежали и греки, сохраняющие счет на пальцах в качестве практического средства очень долгое время. Например, в комедии «Ос» Аристофана (конец V и начало IV века до н. э.) одно из действующих лиц доказывает здесь своему собеседнику:

«Подсчитай попросту на руках, все подати, поступающие нам от городов, да сверх того налоги, многочисленные сотые доли, судебные пошлины, рыночные сборы, морские пошлины, арендную плату и откупа. Все это вме­сте дает нам примерно две тысячи талантов (в год). Из этой суммы теперь положи ежегодную плату шести тысячам судей — больше пока не наберется в стране,— очевидно, получится у нас сто пятьдесят талантов».

Чтобы сделать процесс счета более удобным, первобытный человек начал использовать вместо пальцев небольшие камни. Он складывал из камней пирамиду и определял, сколько в ней камней, но если число велико, то подсчитать количество камней на глаз трудно. Поэтому он стал складывать из камней более мелкие пирамиды одинаковой величины, а из-за того что на руках десять пальцев, то пирамиду составляли именно десять камней.

Следующим шагом было создание древнейших из известных счетов – "саламинская доска" по имени острова Саламин в Эгейском море – которые у греков и в Западной Европе назывались "абак", у китайцев – "суан — пан", у японцев – "серобян". Вычисления на них проводились путем перемещения счетных костей и камешков (калькулей) в полосковых углублениях досок из бронзы, камня, слоновой кости, цветного стекла. Эти счеты сохранились до эпохи Возрождения, а в видоизмененном виде сначала как "дощатый щот" и как русские счеты до настоящего времени.

В своей примитивной форме абак представлял собой дощечку (позднее он принял вид доски, разделенной на колонки перегородками). На ней проводились линии, разделявшие ее на колонки, а камешки раскладывались в эти колонки по тому же позиционному принципу, по которому кладется число на наши счеты. Это нам известно от ряда греческих авторов.

Абак был «походным инструментом» греческого купца. О его коммерческом назначении свидетельствует то обстоятельство, что значения, приписываемые камешку в различных колонках, не выдержаны в постоянном числовом отношении друг к другу, а сообразованы с отношениями различных денежных единиц.

4.Палочки Непера.

Первым устройством для выполнения умножения был набор деревянных брусков, известных как палочки Непера. Они были изобретены шотландцем Джоном Непером (гг.). На таком наборе из деревянных брусков была размещена таблица умножения. Кроме того, Джон Непер изобрел логарифмы.

В 1654 г. Роберт Биссакар, а в 1657 г. независимо С. Патридж (Англия) разработали прямоугольную логарифмическую линейку — это счетный инструмент для упрощения вычислений, с помощью которого операции над числами заменяются операциями над логарифмами этих чисел. Конструкция линейки сохранилась в основном до наших дней.

Вычисления с помощью логарифмической линейки производятся просто, быстро, но приближенно. И, следовательно, она не годится для точных, например финансовых, расчетов.

Общая история периода

Эскиз механического тринадцатиразрядного суммирующего устройства с десятью колесами был разработан еще Леонардо да Винчи (1452— 1519). По этим чертежам в наши дни фирма IBM в целях рекламы построила работоспособную машину.

Первая механическая счетная машина была изготовлена в 1623 г. профессором математики Вильгельмом Шиккардом (1592—1636).В ней были механизированы операции сложения и вычитания, а умножение и деление выполнялось с элементами механизации. Но машина Шиккарда вскоре сгорела во время пожара. Поэтому биография механических вычислительных устройств ведется от суммирующей машины, изготовленной в 1642 г. Блезом Паскалем (1623—1662), в дальнейшем великим математиком и физиком.

В 1673 г. другой великий математик Готфрид Лейбниц разработал счетное устройство, на котором уже можно было умножать и делить. С некоторыми усовершенствованиями эти машины, а названы они были арифмометрами, использовались до недавнего времени.

В 1880г. создает в России арифмометр с зубчаткой с переменным количеством зубцов, а в 1890 году налаживает массовый выпуск усовершенствованных арифмометров, которые в первой четверти 19-ого века были основными математическими машинами, нашедшими применение во всем мире. Их модернизация "Феликс" выпускалась в СССР до 50-х годов.

Мысль о создании автоматической вычислительной машины, которая бы работала без участия человека, впервые была высказана английским математиком Чарльзом Бэббиджем (1791—1864) в начале XIX в. В 1820—1822 гг. он построил машину, которая могла вычислять таблицы значений многочленов второго порядка.

1.Машина Блеза Паскаля.

Считается, что первую механическую машину, которая могла выполнять сложение и вычитание, изобрел в 1646г. молодой 18-летний французский математик и физик Блез Паскаль. Она называется "паскалина".

Формой своей машина напоминала длинный сундучок. Она была достаточно громоздка, имела несколько специальных рукояток, при помощи которых осуществлялось управление, имела ряд маленьких колес с зубьями. Первое колесо считало единицы, второе — десятки, третье — сотни и т. д. Сложение в машине Паскаля производится вращением колес вперед. Двигая их обратно, выполняется вычитание.

Машина Готфрида Лейбница

Следующим шагом было изобретение машины, которая могла выполнять умножение и деление. Такую машину изобрел в 1671 г. немец Готфрид Лейбниц. Хоть машина Лейбница и была похожа на "Паскалину", она имела движущуюся часть и ручку, с помощью которой можно было крутить специальное колесо или цилиндры, расположенные внутри аппарата. Такой механизм позволил ускорить повторяющиеся операции сложения, необходимые для умножения. Само повторение тоже осуществлялось автоматически.

Французский ткач и механик Жозеф Жаккар создал первый образец машины, управляемой введением в нее информацией. В 1802 г. он построил машину, которая облегчила процесс производства тканей со сложным узором. При изготовлении такой ткани нужно поднять или опустить каждую из ряда нитей. После этого ткацкий станок протягивает между поднятыми и пущенными нитями другую нить. Затем каждая из нитей опускается или поднимается в определенном порядке и станок снова пропускает через них нить. Этот процесс многократно повторяется до тех пор, пока не будет получена нужная длина ткани с узором. Для задания узора на ткани Жаккар использовал ряды отверстий на картах. Если применялось десять нитей, то в каждом ряду карты предусматривалось место для десяти отверстий. Карта закреплялась на станке в устройстве, которое могло обнаруживать отверстия на карте. Это устройство с помощью щупов проверяло каждый ряд отверстий на карте. Информация на карте управляла станком.

Читайте также:  Андроид не видит exfat

3.Разностная машина Чарльза Бэббидж

В 1822 г. англичанин Чарльз Бэббидж построил счетное устройство, которое назвал разностной машиной. В эту машину вводилась информация на картах. Для выполнения ряда математических операций в машине применялись цифровые колеса с зубьями. Десять лет спустя Бэббидж спроектировал другое счетное устройство, гораздо более совершенное, которое назвал аналитической машиной.

Друг Бэббиджа, графиня , показала, как можно использовать аналитическую машину машину для выполнения ряда конкретных вычислений. Чарльза Бэббиджа считают изобретателем компьютера, а Аду Лавлейс называют первым программистом компьютера.

В 1985 г. сотрудники Музея науки в Лондоне решили выяснить наконец, возможно ли на самом деле построить вычислительную машину Бэббиджа. После нескольких лет напряженной работы старания увенчались успехом. В ноябре 1991 г. незадолго до двухсотлетия со дня рождения знаменитого изобретателя, разностная машина впервые произвела серьезные вычисления.

После смерти Бэббиджа умер и его сын, но перед этим он успел построить несколько миникопий разностной машины Бэббиджа и разослать их по всему миру, дабы увековечить эту машину. В октябре 1995 года одна из тех копий была продана на лондонском аукционе австралийскому музею электричества в Сиднее за $200,000.

4.Герман Холлерит.

В конце XIX в. были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. Это сочетание делало машину настолько работоспособной, что она получила широкое применение в своё время. Например, при переписи населения в США, проведенной в 1890 г., Холлерит, с помощью своих машин, смог выполнить за три года то, что вручную делалось бы в течении семи лет, причем гораздо большим числом людей.

Первые электромеханические компьютеры

Идеи создания электронных вычислительных машин возникли в конце 30-х — начале 40-х гг. независимо друг от друга в четырех странах: СССР, США, Великобритании и Германии. Во время второй мировой войны (с 1939 по 1945г.) были построены несколько первых электромеханических компьютеров:

Первым электронным компьютером стал английский COLOSSUS-1, использующийся для расшифровки секретного кода, который применяла Германия для передачи сообщений особой важности.

Это одна (более мощная) из двух машин, созданных в гг. профессором Атанасовым Джоном Винсентом и его аспирантом . Оригинальной особенностью АВС было разделение обрабатывающих и запоминающих устройств. Блок памяти состоял из набора конденсаторов с автоматическим восстановлением заряда. Информация вводилась с перфокарт. При вычислении использовалось двоичное представление чисел. Блок управления был собран на электронных лампах и позволял осуществлять многократное поразрядное сложение и вычитание чисел.

Большой толчок в развитии вычислительной техники дала вторая мировая война: американским военным понадобился компьютер, которым стал “Марк-1” — первый в мире автоматический вычислительный компьютер, изобретённый в 1944 г. профессором Айкнем. В нём использовалось сочетание электрических сигналов и механических приводов. Программа обработки данных вводилась с перфоленты. Размеры: 15 X 2,5 м., 750000 деталей. "Марк-1" мог перемножить два 23-х разрядных числа за 4 с.

ЭВМ появились, когда возникла острейшая необходимость в очень трудоемких и точных расчетах, особенно в таких областях науки и техники, как атомная физика и теория динамик полета и управления летательными аппаратами, в исследовании; аэродинамики больших скоростей. Между тем доэлектронная вычислительная техника (механическая и электромеханическая) позволяла только в ограниченной степени механизировать процессы вычислений. Требовался переход к элементам, работающим в более быстром темпе.

Технические предпосылки для этого уже были созданы: развивалась электроника и счетно-аналитическая вычислительная техника. В 1904 г. Дж. Флеминг (Великобритания) изобрел первый ламповый диод, а в 1906 г. Ли де Форест (США) — первый триод. До середины 30-х гг. электронные лампы уже стояли во всех радиотехнических устройствах. Но эра ЭВМ начинается с изобретения лампового триггера. Это открытие было сделано независимо друг от друга советским ученым М. А, Бонч-Бруевичем (1918) и английскими учеными У. Экклзом и Ф. Джорданом (1919). Триггерные схемы постепенно стали широко применяться в электронике для переключения и релейной коммутации и т. д.

1. Аналоговые вычислительные машины (АВМ).

В АВМ все математические величины представляются как непрерывные значения каких-либо физических величин. Главным образом, в качестве машинной переменной выступает напряжение электрической цепи. Их изменения происходят по тем же законам, что и изменения заданных функций. В этих машинах используется метод математического моделирования (создаётся модель исследуемого объекта). Результаты решения выводятся в виде зависимостей электрических напряжений в функции времени на экран осциллографа или фиксируются измерительными приборами. Основным назначением АВМ является решение линейных и дифференцированных уравнений.

ü высокая скорость решения задач, соизмеримая со скоростью прохождения электрического сигнала;

ü простота конструкции АВМ;

ü лёгкость подготовки задачи к решению;

ü наглядность протекания исследуемых процессов, возможность изменения параметров исследуемых процессов во время самого исследования.

ü малая точность получаемых результатов (до 10%);

ü алгоритмическая ограниченность решаемых задач;

ü ручной ввод решаемой задачи в машину;

ü большой объём задействованного оборудования, растущий с увеличением сложности задачи

2. Электронные вычислительные машины (ЭВМ).

В отличие от АВМ, в ЭВМ числа представляются в виде последовательности цифр. В современных ЭВМ числа представляются в виде кодов двоичных эквивалентов, то есть в виде комбинаций 1 и 0. В ЭВМ осуществляется принцип программного управления. ЭВМ можно разделить на цифровые, электрифицированные и счётно-аналитические (перфорационные) вычислительные машины.

ЭВМ разделяются на большие ЭВМ, мини-ЭВМ и микроЭВМ. Они отличаются своей архитектурой, техническими, эксплуатационными и габаритно-весовыми характеристиками, областями применения.

ü высокая точность вычислений;

ü автоматический ввод информации, необходимый для решения задачи;

ü разнообразие задач, решаемых ЭВМ;

ü независимость количества оборудования от сложности задачи.

ü сложность подготовки задачи к решению (необходимость специальных знаний методов решения задач и программирования);

ü недостаточная наглядность протекания процессов, сложность изменения параметров этих процессов; сложность структуры ЭВМ, эксплуатация и техническое обслуживание;

ü требование специальной аппаратуры при работе с элементами реальной аппаратуры.

3.Аналого-цифровые вычислительные машины (АЦВМ).

АЦВМ — это такие машины, которые совмещают в себе достоинства АВМ и ЭВМ. Они имеют такие характеристики, как быстродействие, простота программирования и универсальность. Основной операцией является интегрирование, которое выполняется с помощью цифровых интеграторов.

В АЦВМ числа представляются как в ЭВМ (последовательностью цифр), а метод решения задач как в АВМ (метод математического моделирования).

Можно выделить 4 основные поколения ЭВМ. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:

Ссылка на основную публикацию
Гугл таблицы условное форматирование формулы
518583 просмотра 6 ответа 2056 Репутация автора Я использую Google Sheets для ежедневной панели. Мне нужно изменить цвет фона ячейки...
Выскакивает инструкция печать на обеих сторонах
Выполнять двустороннюю печать на принтере не только экономно в плане затрат листов, но иногда бывает очень удобно, например, при распечатке...
Вычислить арктангенс в градусах
Арктангенс — обратная тригонометрическая функция. Общепринятое обозначение арктангенса — arctg x. При этом довольно часто, особенно в зарубежной литературе можно...
Диагонали куба пересекаются под прямым углом
Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны. Свойства куба: 1. В кубе $6$...
Adblock detector