Как найти число витков соленоида

Как найти число витков соленоида

Соленоид — длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках здесь подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного материала плотность магнитного потока внутри катушки является фактически постоянной и (приближенно) равна

где − магнитная постоянная, − число витков, − ток и − длина катушки. Пренебрегая краевыми эффектами на концах соленоида, получим [16] , что потокосцепление через катушку равно плотности потока , умноженному на площадь поперечного сечения и число витков :

Отсюда следует формула для индуктивности соленоида (без сердечника):

Если катушка внутри полностью заполнена магнитным материалом (сердечником), то индуктивность отличается на множитель — относительную магнитную проницаемость [17] сердечника:

В случае, когда , можно (следует) под S понимать площадь сечения сердечника и пользоваться данной формулой даже при толстой намотке, если только полная площадь сечения катушки не превосходит площади сечения сердечника во много раз.

Более точные формулы для соленоида конечного размера

Для однослойного (с очень тонкой намоткой) соленоида конечных размеров (не бесконечно длинного) существуют более точные, хотя и более сложные формулы [18] :

— количество витков,

— радиус цилиндра,

— длина его образующей,

,

,

— Эллиптические интегралы.

для

для

Трансформатор. Энергия магнитного поля. Основы теории Максвелла. Уравнения Максвелла в интегральной форме.

Электрический колебательный контур. Затухающие электромагнитные колебания. Вынужденные электромагнитные колебания. Явление резонанса

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

Принцип действия

Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет

При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

, где — индуктивность катушки, — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения .

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

В общем, описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.

Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника. Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Принцип действия генератора переменного тока легко показать при рассмотрении вращающейся рамки провода в магнитном поле.

В однородное магнитное поле с индукцией В помещаем прямоугольную рамку, образованную проводниками (abсd).

Пусть плоскость рамки перпендикулярна индукции магнитного поля В и ее площадь равна S.

Магнитный поток в момент времени t = 0 будет равен Ф = В*8.

Читайте также:  Исполняемый модуль exe защищенного канала базы мультимедиа

При равномерном вращении рамки вокруг оси OO1 с угловой скоростью w магнитный поток, пронизывающий рамку, будет изменяться с течением времени по закону:

Изменение магнитного потока возбуждает в рамке ЭДС индукцию, равную

где Е= ВSw — амплитуда ЭДС.

Если с помощью контактных колец и скользящих по ним щеток соединить концы рамки с электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по гармоническому закону, в электрической цепи возникнут вынужденные гармонические колебания силы тока — переменный ток.

На практике синусоидальная ЭДС возбуждается не путем вращения рамки в магнитном поле, а путем вращения магнита или электромагнита (ротора) внутри статора — неподвижных обмоток, навитых на сердечники из магнитомягкого материала. В этих обмотках находится переменная ЭДС, что позволяет избежать снятия напряжения с помощью контактных колец.

Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением.

Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z]=0 или Im[Y]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.

;

, , (9)

где — число витков на единицу длины; объем соленоида.

Индуктивность соленоида пропорциональна квадрату числа витков на единицу его длины, объему соленоида и магнитной проницаемости вещества сердечника соленоида.

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности,

, при L = const , (10)

т.е. ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Из аналогии следует физический смысл индуктивности: индуктивность контура является мерой инертности контура по отношению к изменению тока в контуре.

Глава 1. Электродинамика

1.21. Самоиндукция. Энергия магнитного поля

Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре.

Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется генри (Гн). Индуктивность контура или катушки равна 1 Гн, если при силе постоянного тока 1 А собственный поток равен 1 Вб:

1 Гн = 1 Вб / 1 А.

В качестве примера рассчитаем индуктивность длинного соленоида, имеющего N витков, площадь сечения S и длину l. Магнитное поле соленоида определяется формулой (см. § 1.17)

где I – ток в соленоиде, n = N / e – число витков на единицу длины соленоида.

Магнитный поток, пронизывающий все N витков соленоида, равен

Следовательно, индуктивность соленоида равна

где V = Sl – объем соленоида, в котором сосредоточено магнитное поле. Полученный результат не учитывает краевых эффектов, поэтому он приближенно справедлив только для достаточно длинных катушек. Если соленоид заполнен веществом с магнитной проницаемостью μ, то при заданном токе I индукция магнитного поля возрастает по модулю в μ раз (см. § 1.17); поэтому индуктивность катушки с сердечником также увеличивается в μ раз:

ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадеяравна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Если включить электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, то при размыкании ключа наблюдается кратковременная вспышка лампы (рис. 1.21.1). Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Магнитная энергия катушки. При размыкании ключа K лампа ярко вспыхивает.

Из закона сохранения энергии следует, что вся энергия, запасенная в катушке, выделится в виде джоулева тепла. Если обозначить через R полное сопротивление цепи, то за время Δt выделится количество теплоты ΔQ = I 2 RΔt.

Читайте также:  Нельзя создавать переменные с пустым именем сбис

Ток в цепи равен

Выражение для ΔQ можно записать в виде

В этом выражении ΔI

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Вычисление энергии магнитного поля.

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

где V– объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергии. Дж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

Приборы и принадлежности: лабораторная установка с соленоидом, источник питания, милливольтметр, амперметр.

Соленоидом называется цилиндрическая катушка, содержащая большое, число витков провода, по которому идет ток. Если шаг вин­товой линии проводника, образующего катушку, мал, то каждый ви­ток с током можно рассматривать как отдельный круговой ток, а соленоид — как систему последовательно соединенных круговых токов одинакового радиуса, имеющих общую ось.

Магнитное поле внутри соленоида можно представить как сумму магнитных полей, создаваемых каждым витком. Вектор индукции маг­нитного поля внутри соленоида перпендикулярен плоскости витков, т.е. направлен по оси соленоида и образует с направлением кольце­вых токов витков правовинтовую систему. Примерная картина силовых линий магнитного поля соленоида показана на рис. 1. Силовые линии магнитного поля замкнуты.

На рис, 2 показано сечение соленоида длиной L и с числом витков N и радиусом поперечного сечения R. Кружки с точками обозначают сечения витков катушки, по которым идет ток I , на­правленный от чертежа на нас, а кружки с крестиками — сечения вит­ков, в которых ток направлен за чертеж. Число витков на единицу длины соленоида обозначим .

Индукция магнитного поля в точке А , расположенной на оси соленоида, определяется путем интегрирования магнитных полей, со­здаваемых каждым витком, и равна

, (1)

где и — углы, образуемые с осью соленоида радиус-векто­рами и , проведенными из точки А к крайним виткам солено­ида, -магнитная проницаемость среды, магнитная постоянная.

Таким образом, магнитная индукция В прямо пропорциональна си­ле тока, магнитной проницаемости среды, заполняющей соленоид, и числу витков на единицу длины. Магнитная индукция также зависит от положения точки А относительно концов соленоида. Рассмотрим нес­колько частных случаев:

1. Пусть точка А находится в центре соленоида, тогда , и . Если соленоид достаточно длинный, то и (2)

2. Пусть точка A находится в центре крайнего витка, тогда , и . Если солено­ид достаточно длинный, то , и (3)

Из формул (2) и (3) видно, что магнитная индукция соленоида на его краю вдвое меньше по сравнению с ее величиной в центре.

3. Если длина соленоида во много раз больше радиуса его витков
("бесконечно" длинный соленоид), то для всех точек, лежащих внутри
соленоида на его оси, можно положить . Тогда
поле можно считать в центральной части соленоида однородным и рассчитывать его по формуле

(4)

Однородность магнитного поля нарушается вблизи краев соленоида. В этом случае индукцию можно определять по формуле

, (5)

где k — коэффициент, учитывающий неоднородность поля.

Экспериментальное изучение магнитного поля соленоида в данной работе осуществляется с помощью специального зонда — маленькой катушки, укрепленной внутри штока с масштабной линейкой. Ось катуш­ки совпадает с осью соленоида, катушка подключается к милливольт­метру переменного тока, входное сопротивление которого много боль­ше сопротивления катушки-зонда. Если через соленоид идет перемен­ный ток стандартной частоты ( =50 Гц), то внутри соленоида и на его краях индукция переменного магнитного поля изменяется по закону (см. (5)):

Амплитуда магнитной индукции в этой формуле зависит от положения точки внутри соленоида. Если поместить в соленоид катуш­ку-зонд, то в соответствии с законом электромагнитной индукции, в ней возникает ЭДС индукции:

Читайте также:  Разгон процессора amd athlon ii x4 640

, (6)

где N1 — число витков в катушке, S — площадь поперечного сече­ния катушки, Ф — магнитный поток ( , т.к. ось катушки совпадает с осью соленоида и, следовательно, вектор магнитной ин­дукции перпендикулярен плоскости поперечного сечения катушки.).

Так как величина индукции B изменяется по закону , , то из (6) получается формула для расчета ЭДС:

(7)

Из выражения (7) видно, что амплитуда ЭДС зависит от . Таким образом, измеряя амплитуду ЭДС, можно определить :

(8)

Коэффициент k учитывающий неоднородность магнитного поля соленоида на краях, можно о определить., по формуле. (5), зная и :

(9)

где — амплитуда переменного тока, идущего через соленоид.

Из формул (7) и (9) следует, что амплитуда ЭДС индукции прямо пропорциональна амплитуде переменного тока :

(10)

Включенные в цепь переменного тока амперметр и милливольт­метр измеряют действующие значения тока и ЭДС , которые связаны с амплитудами и соотношениями:

;

Для действующих значений тока и ЭДС формула (10) имеет вид

(11)

Из формулы (11) следует, что отношение пропорциональ­но коэффициенту K неоднородности индукции магнитного поля в точке соленоида, где проводятся измерения

(12)

где А — коэффициент пропорциональности.

В данной работе требуется выполнить два задания: 1) опреде­лить распределение индукции вдоль оси соленоида при некотором постоянном значении тока; 2) определить значение коэффициента к.

1. Не подключают/ самостоятельно источник питания и милливольтметр к сети 220 В.

2. Не производить переключения цепей, находящихся под напряжением.

Не прикасаться к неизолированным частям цепей.

3. Не оставлять без присмотра включенную схему.

Порядок выполнения работы

Задание № 1. Исследование распределения индукции магнитного поля вдоль оси соленоида.

1. Собрать измерительную цепь по схеме, приведенной на рис. 3. Для этого в цепь соленоида включить источник питания и амперметр, а к выводам катушки — зонда — милливольтметр (для измерения ) В данной установке катушка-зонд имеет следующие параметры: =200 витков, S=2*10 -4 м 2 , частота переменного тока = 50 Гц, Число витков на единицу длины соленоида n = 2400 1/м

1- лабораторный стенд Z — шток «

3- соленоид
5- амперметр

6- источник питания с регулятором выход­ного напряжения (тока), 7- милливольтметр.

2. Установить шток с масштабной линейкой так, чтобы катушка-зонд оказалась примерно в середине соленоида.

3.Включить источник питания соленоида и установить ток соленоида (по амперметру), равный =25мА. Включить милливольтметр и после прогрева (5 мин) снять показания .

4.Перемещая шток с масштабной линейной, измерить при помощи
милливольтметра действующее значение ЭДС индукции через каждый
сантиметр положения линейки. По формуле (8) вычислить .
Результаты измерений и расчетов занести в таблицу 1 (учтите, что ).

№ п/п Положение линейки-Х

Погрешность в каждой точке, соленоида определяется как систематическая погрешность косвенных измерений:

где м 2 , виток; =1 Гц; — погреш­ность измерения ; по милливольтметру.

5.Построить график

6.Зная амплитуду тока и число витков на единицу
длины соленоида n, определить в центре соленоида по
формуле (4) и сравнить с измеренным в той же точке значением

Задание 2. Измерение коэффициента неоднородности’ магнитного
поля соленоида.

1. Снять зависимость для данного соленоида. Дня этого установить шток в положение, когда катушка-зонд находится у края соленоидами, изменяя действующее значение тока соленоида с помощью источника питания, снять значения и и занести в таблицу 2.

Измерения

По формуле (12) рассчитать , где

1. Сформулируйте закон электромагнитной индукции.

2. Нарисуйте картину силовых линий соленоида.

3. Перечислите основные способы исследования магнитного поля.

4. В каких случаях для исследования магнитного поля можно исполь­зовать катушку-зонд?

5. Выведите формулу для вектора магнитной индукции бесконечно длинного соленоида.

Литература

3. Скорохватов Н.А. Курс лекций по электромагнетизму. М: МИИГАиК, 2006.

4. Савельев И.В., Курс общей физики, т. 2 (любое издание).

5. Трофимова Т.И., Курс физики (любое издание).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9904 — | 7554 — или читать все.

Ссылка на основную публикацию
Как использовать шкалу в mortal kombat x
Игровая механика Mortal Kombat X более глубока по сравнению с прошлыми частями родом из 90-х. Комбо, суперудары, атаки X-Ray. Сходу...
Как добавить шрифты в indesign
Когда вы открывали документ, основанный на шаблоне, шрифт GracelessSans отсутствовал в системе. Вы найдете текст, набранный шрифтом GracelessSans, и замените...
Как завести личный кабинет на портале госуслуг
Зарегистрироваться в Госуслугах может любой гражданин РФ. Процесс регистрации и подтверждения аккаунта занимает всего пару минут. Для прохождения регистрации воспользуйтесь...
Как на роутере мегафон прочитать смс
В этом обзоре мы рассмотрим роутер Мегафон – приведем характеристики выбранной модели, сделаем небольшой обзор доступных моделей и расскажем о...
Adblock detector