Уравнение точки пересечения медиан

Уравнение точки пересечения медиан

УСЛОВИЕ:

Номер 3. Найти уравнение медианы АD и координаты точки пересечения медиан этого треугольника

РЕШЕНИЕ ОТ SOVA ✪ ЛУЧШЕЕ РЕШЕНИЕ

Координаты точки D — середины ВС

Уравнение медианы ВК
К- середина АС
К(-1/2;3/2)

Координата точки М — точки пересечения медиан AD и ВК

<5x-3y+4=0 ⇒ 5x-3*(x+4)+4=0 ⇒ 2x=8 ⇒ x=4
y=8

Как найти точку пересечения медиан треугольника, зная координаты его вершин?

Поскольку все медианы треугольника пересекаются в одной точке, достаточно составить уравнения двух медиан и найти координаты их точки пересечения.

Найти координаты точки пересечения медиан треугольника с вершинами в точках A(-4;-1), B(0;-3), C(2;1).

Обозначим середины сторон BC и AC через A1 и B1 соответственно. По формулам координат середины отрезка

Составим уравнения медиан AA1 и BB1.

Уравнение медианы AA1 можно найти как уравнение прямой, проходящей через две точки A(-4;-1) и A1(1;-1).

то есть уравнение прямой AA1 y= -1.

B(0;-3), B1(-1;0). Найдём уравнение медианы BB1.

откуда уравнение прямой BB1 y= -3x-3.

Координаты точки пересечения прямых AA1 и BB1 ищем как решение системы уравнений

Поскольку все медианы медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины, можно найти координаты концов любой медианы, а затем точку, которая делит медиану в отношении 2:1, начиная отсчёт от точки, которая является вершиной треугольника.

Например, в условиях предыдущей задачи — найти координаты точки пересечения медиан треугольника с вершинами в точках A(-4;-1), B(0;-3), C(2;1),

зная координаты A1(1;-1), найдём координаты точки M. Точка M пересечения медиан треугольника делит отрезок AA1 в отношении 2:1, считая от точки A.

Медиана

Медиана – это отрезок, соединяющий вершину треугольника с серединой отрезка противоположной стороны. Три медианы треугольника пересекаются в одной точке, которая зовется точкой пересечения медиан.

Читайте также:  Количество ключей в комплекте замка

Медианы, в отличие от высот, всегда лежат внутри треугольника. Это логично, ведь отрезок медианы соединяет вершину и середину стороны. А середина стороны всегда лежит внутри треугольника.

Рис. 1. Медианы в тупоугольном треугольнике.

Если соединить два любых основания медиан отрезком, то получится средняя линия треугольника. Три средние линии треугольника образуют треугольник, подобный изначальному с коэффициентом подобия 1:2

Есть еще одно любопытное свойство медиан, которое позволит не запутаться при построении золотого сечения треугольника. Медиана в треугольнике всегда располагается между высотой и биссектрисой.

Рис. 2. Золотое сечение произвольного треугольника.

Приведем так же формулу вычисления длины медианы по трем сторонам. Эта формула часто используется при решении задач, а потому ее желательно запомнить.

Зачастую ученикам проще запомнить словесную формулировку, а не заучивать формулу. Чтобы найти медиану по трем сторонам, нужно взять корень из сумм удвоенных квадратов сторон минус квадрат стороны, к которой проведена медиана. Полученный корень нужно поделить пополам.

Точка пересечения медиан

Точка пересечения медиан является одной из 3 замечательных точек треугольника, которые составляют золотое сечение треугольника.

Точка пересечения медиан треугольника имеет ряд свойств, полезных при решении задач:

  • Медиана точкой пересечения делится на отрезки с коэффициентом пропорциональности 1:2 считая от вершины.
  • Три медианы, проведенные в треугольнике, делят его на 6 равновеликих треугольников. Равновеликими называют треугольники с равной площадью. Сами по себе эти фигуры имеют мало общего, но численная характеристика площади у них совпадает.
  • Точка пересечения медиан в треугольнике называется центроидом и является центром тяжести треугольника.

Точка пересечения медиан единственная из золотого сечения треугольника, имеет реальный физический смысл. Если из картона вырезать треугольник, тонким карандашом провести в нем медианы, то точка их пересечения будет центром тяжести плоской фигуры.

Читайте также:  Квартирный щиток схема с узо

Рис. 3. Центр тяжести треугольника.

Это значит, что если установить иголку в эту точку, то фигура будет держаться на ней без прокола, исключительно за счет равновесия.

Что мы узнали?

Мы привели формулу вычисления медианы по 3 сторонам треугольника. Привели несколько свойств точки пересечения медиан в треугольнике. Поговорили о реальном физическом значение центроида треугольника.

Ссылка на основную публикацию
Ударные головки для пневмогайковерта
На сайте продавца доступен "Онлайн консультант".Для перехода на сайт нажмите "В магазин" На сайте продавца доступен бесплатный номер 8-800.Для перехода...
Топ лучших электрических чайников
Выбор электрического чайника может стать непростой задачей. Разнообразие моделей ставит перед покупателем вопрос, какой прибор наилучшим образом справится со своим...
Топ медиаплееров для телевизора 2018
Рейтинг 2018 года Полезная статья Актуально сейчас Apple TV 4K 32GB Видео Приставка подойдёт многим, не только «яблочникам», ведь это...
Удлинитель для роутера wifi провод
Wi-Fi удлинитель — специальное устройство, работающее по принципу стандартной антенны, которая помогает обогнуть препятствия для сигнала. Удлинитель вай-фай можно использовать...
Adblock detector